Sage Interact


Jump to: navigation, search


Sage Interact

Sage allows you to create interactive cells where users can adjust sliders and enter values into text boxes. The keyword @interact tells Sage that a cell is interactive.


Simple Graph Viewer

This code offers the user a text box to enter a function to graph, and text boxes to enter the minimum x value and maximum x value.

def _(Function = x^2 + 1, X_Min = -3.0,X_Max = 3.0,):
    html('<h2>Simple Grapher</h2>')
    p = plot( Function, (X_Min, X_Max) )

Image: Graph_viewer.png

Binary Search Tree Visualization

This code allows the user to enter values to be inserted into a binary search tree and draws a visualization of the binary search tree. Note: This is still in development and the drawing code doesn't behave quite correctly yet.

class TreeNode:
    def __init__(self, val, left_child = None, right_child = None):
        self.__val = val
        self.__left = left_child
        self.__right = right_child

    def getValue(self):
        return self.__val

    def getLeft(self):
        return self.__left

    def getRight(self):
        return self.__right

    def setLeft(self, node):
        self.__left = node

    def setRight(self, node):
        self.__right = node

    def __len__(self):
        return int(1)

class BSTree:
    def __init__(self, root):
        if root == None:
            self.__root = None
            self.__numItems = 0
            self.__root = root
            self.__numItems = len(root)
        self.__startLoc = [0,100]

    def printTree(self):
        print "Binary Search Tree: Values in Prefix Order:"

    def __printPrefix(self,node):
        if node == None:
        print node.getValue()

    def __len__(self):
        return self.__numItems

    def __str__(self):
        return 'Binary Search Tree with %d items'%self.__numItems

    def __contains__(self,val):
        return self.__find(val, self.__root)

    def __find(self,val,node):
        if node == None:
            return False
        elif node.getValue() == val:
            return True
        elif node.getValue() < val:
            return self.__find(val,node.getRight())
            return self.__find(val,node.getLeft())

    def add(self, val):
        self.__addNode( val , self.__root )
        self.__numItems += 1

    def __addNode(self, val, node):
        if node == None:
            return TreeNode( val )
        elif node.getValue() < val:
            newSubTree = self.__addNode( val, node.getRight() )
            return node
            newSubTree = self.__addNode( val, node.getLeft() )
            node.setLeft( newSubTree )
            return node

    def printTreeInteractive(self,g):
        return self.__printInteractive(g,self.__root,0,1,self.__startLoc)

    def __printInteractive(self, g, node, depth, lr, loc):
        if node != None:
            oldLoc = copy(loc)
            loc[0] = loc[0] - 20*lr
            loc[1] = loc[1] - 15
            if node != self.__root:
                g += line( [ oldLoc , loc ] )
            g += circle( ( loc[0], loc[1]), 3 )
            g += text( str( node.getValue() ) , ( loc[0], loc[1]) )
            g += self.__printInteractive( g, node.getLeft(), depth + 1, 1, copy(loc) )
            g += self.__printInteractive( g, node.getRight(), depth + 1, -1, copy(loc) )
        return g

tree = BSTree(TreeNode(25))
def _(Add_Node = 20):
    g = Graphics()
    html('<h2>Binary Search Tree</h2>')
    tree.add( int( Add_Node ) )
    g = Graphics()
    g = tree.printTreeInteractive( g )

Image: Sage_binary_tree.png

Personal tools